RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. SIXTH SEMESTER EXAMINATION, MAY-JUNE 2013

THIRD YEAR

Chemistry (Honours)

Date : 24/05/2013 Time : 11am - 1pm

Paper : VIII(A)

Full Marks : 50

(Use separate answer book for each group)

Group-A

(Attempt one question from each unit)

<u>Unit-I</u>

- a) To explain the kinetics of unimolecular reactions, Lindemann proposed a mechanism of activation by collision and the subsequent rate law may be first order in certain situations. Illustrate this point clearly.
 - b) What is Franck-Condon Principle? Using appropriate potential energy curves discuss the phenomena of normal dissociation and pre-dissociation from the excited state after usual excitation from the ground state.
 - c) Absorption spectra and Fluorescence spectra are almost mirror image to each other, as well as later one is red shifted to former one. Do you agree with above fact? Explain.
 - d) A second order reaction in solution has rate constant 5.7×10^{-5} dm³ mol⁻¹ s⁻¹ at 25°C and 1.64×10^{-4} dm³ mol⁻¹ s⁻¹ at 40°C. Calculate the activation energy and the pre-exponential factor. Also calculate Δ^{\ddagger} G° and Δ^{\ddagger} H° at 25°C. 2+2
- 2. a) Write down the Lambert-Beer's Law and explain the terms. What are the assumptions involved for writing down the law in this form.
 - b) What do you understand by quantum yield? Does a quantum yield less than one or greater than one contradict Stark Einstein's Law of photochemical equivalence? Give one example of each. 1+2+1
 - c) Explain the mechanism of photochemical dissociation of HI and hence show that its quantum efficiency (ϕ) is 2.
 - d) In between phosphorescence and fluorescence which one is of long duration? Explain.
 - e) A 10^{-3} (M) solution of *A* also contains some *B*, and the solution when placed in a 2 cm cell absorbs 80% of the incident light at a certain wavelength. If the extinction coeff of *A* and *B* at this wavelength are 250 and 1000 respectively, then find the concentrations of *B* in the solution.

<u>Unit-II</u>

3.	a)	For Harmonic Oscillator, the transition moment integral $\langle \psi_v \mu \psi_{v'} \rangle$ exists only if	
		$\Delta v = v - v' = \pm 1$. Justify or criticise.	3
	b)	Can rotational spectroscopy be used to find out the mass of an isotope? Explain.	2
	c)	The vibrational spectrum of ${}^{1}\text{H}^{35}\text{Cl}$ shows the fundamental at 2886 cm ⁻¹ , first overtone at 5668	
		cm ⁻¹ . Calculate –	
		(i) the anharmonicity constant	
		(ii) harmonic oscillator frequency	1+2
	d)	Explain why? Raman lines for bending modes of H ₂ O are not observed.	2

4. a) What do you understand by hot bands? "The intensity of a hot band increases with temperature." – Justify or criticize.

1+2+2

3

3

2+1

3 2

3

3

- b) Using the CO_2 molecule as a test case, explain mutual exclusion principle. (Take any two modes)
- c) The consecutive lines in the rotational spectrum of ${}^{1}\text{H}^{79}\text{Br}$ are observed at 84.544, 101.355, 118.112 cm⁻¹.
 - (i) Assign the lines to their $J'' \rightarrow J'$ transitions
 - (ii) Deduce the values of rotational constant and centrifugal distortion in cm^{-1} .

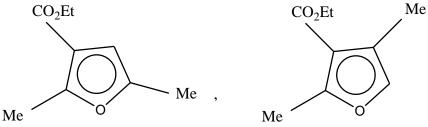
Group-B

<u>Unit-I</u>

Answer any one question

- 5. a) Provide an explanation to each of the following:-
 - (i) β -D glucopyranose gets oxidised more rapidly than α -D glucopyranose by bromine water. $2\frac{1}{2}$
 - (ii) Oxidation of D-fructose with Tollens' reagent yields a mixture of D-mannonic acid and D-gluconic acid.
 2
 - (iii) α -D galactose readily forms diacetonide with acetone in presence of dry HCl but α -D glucose does so only in furanose form. $2\frac{1}{2}$
 - b) Two different D-aldohexores produce the same aldaric acid on oxidation with HNO_3 write their structures with reason.
 - c) How can you prepare phenyl alanine by the azalactone method?
 - d) What would happen when D-glucose is treated with benzaldehyde in presence of dry HCl?
- 6. a) How can you cleave the methionine residue in a polypeptide using BrCN?
 - b) How can you synthesise the tripeptide Gly-Ala-Phe by the Merrifield method?
 - c) Write down the product(s) with mechanism:

Alanine $\xrightarrow{AC_2O/Pyridine}{\Delta}$?


- d) Explain the role of '<u>DNF B</u>' for the determination of N-terminal amino acid of a peptide.
- e) Write down the product(s) of the reaction –

 $D-Glu \cos e \xrightarrow{>=0}{HCl(Dry)}$

<u>Unit-II</u>

Answer any one question

- 7. a) Synthesis chloroquine and mention its one use.
 - b) Write down the structures of guanosine and adenosine. Why does guanosine hydrolyse more rapidly than adenosine?
 - c) Make the following heterocycles using the same starting materials, showing the reagents and probable mechanism –

- d) Convert pyridine to 4-nitorpyridine.
- 8. a) Indicate the structural differences between nucleosides and nucleotides, with example.

3

4

3

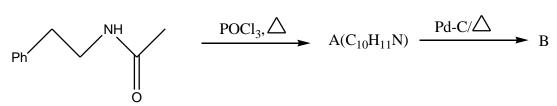
2 2

2

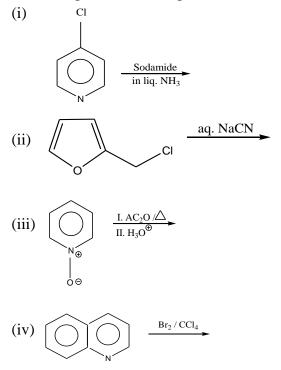
3

3

3


2 2

- 2
- 5


2

2

- b) Outline the synthesis of phenobarbital.
- c) Identify *A* and *B* in following reaction sequence and indicate the mechanism leading to *A*.

d) Write the product(s) with possible mechanism (any three):-

ち 後 え の 参 の 後 の む

2+2+2